ERRATUM: "AN INFINITE PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE WITH BOUNDARY"

RYOMA KOBAYASHI AND GENKI OMORI

The purpose of this note is to call attention to an error in the paper [1]. In addition, we notice the abelianization of the mapping class group $\mathcal{M}(N_{g,n})$ for g = 1, 2.

Correction of relations. There is an error in part of the relations (D1a)-(D4g) in the presentation in [1, Proposition 3.2]. The mistake is due to a miscalculation of the exponent of d_k^1 at the end of the relations (we call the exponent the *index*). We list the revision of relations as follows:

- Relation (D1b) for i = 1: " $y(a_{i;k}a_i^{-1})y^{-1} = \dots r_{2;k}r_{1;k}d_{n-1}^{-2}$ " \rightarrow " $y(a_{i;k}a_i^{-1})y^{-1} = \dots r_{2;k}r_{1;k}$ ",
- Relation (D2a) for m = i 1: " $a_m r_{i;k} a_m^{-1} = \dots r_{i;k} (a_{i-1;k} a_{i-1}^{-1}) d_k$ " \rightarrow " $a_m r_{i;k} a_m^{-1} = \dots r_{i;k} (a_{i-1;k} a_{i-1}^{-1})$ ",
- Relation (D2b) for i = 2: " $yr_{i;k}y^{-1} = \dots r_{2;k}r_{1;k}d_{n-1}$ " \rightarrow " $yr_{i;k}y^{-1} = \dots r_{2;k}r_{1;k}$ ",
- Relation (D4e) for m = 1 and l > j: " $r_{m;l}(\bar{s}_{j;k}d_j^{-1})r_{m;l}^{-1} = \{ \dots \}^{-1}(\bar{s}_{j;k}d_j)^{-1} \{ \dots \}$ " \rightarrow " $r_{m;l}(\bar{s}_{j;k}d_j^{-1})r_{m;l}^{-1} = \{ \dots \}^{-1}(\bar{s}_{j;k}d_j^{-1}) \{ \dots \}$ ".

The last error is a typo. The first three errors are due to a mistake of [1, Lemma 5.9]. To be precise, ε in Lemma 5.9 is correct as follows.

$$\varepsilon = \begin{cases} 2 & \text{for Relation (D1e)' for } m = i + 1, \\ 1 & \text{for Relation (D1d)' for } m = i + 1, \\ -1 & \text{for Relations (D1b)' for } i = 2, \text{ (D1c)' for } i = 4, \\ & \text{and (D1d)' for } m = i - 1 \\ -2 & \text{for Relation (D1e)' for } m = i, \\ 0 & \text{for the other cases.} \end{cases}$$

The relation $[r_{2;1}] = [r_{1;1}]$ in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$. By (the corrected version of) Relation (D2b) for i = 2, we have $2[r_{1,k}] = 1$ for $1 \le k \le n-1$. By Relation (D2a) for m = i - 1 or m = i, we have $[r_{i+1,k}] = -[r_{i,k}]$ for $1 \le i \le g-1$. Hence, by using these relations, we have

$$[r_{2,k}] = -[r_{1,k}] = [r_{1,k}]$$

¹There is a place where d_k is written incorrectly as d_{n-1} .

in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$. Since $[r_{2,k}] = [r_{1,k}]$ has order 2 in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$, by a similar argument above, we also have $[r_{i+1,k}] = [r_{i,k}]$ in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$ for $1 \le i \le g-1$.

Relations (D1a)–(D4g) for n = 2. For $1 \leq k \leq n-1$, we regard $N_{g,k}$ as the surface which is obtained from $N_{g,n}$ by attaching n-k disks along $\delta_{n-1}, \delta_{n-2}, \ldots, \delta_k$. The natural inclusion $N_{g,k+1} \hookrightarrow N_{g,k}$ induces a surjective homomorpism $\mathcal{M}(N_{g,k+1}) \to \mathcal{M}^+(N_{g,k}, x_0)$, where x_0 is a base point in the interior of the disk capping δ_k . Since the kernel of this homomorphism is the infinite cyclic group generated by the boundary twist d_{k+1} , a relation in $\mathcal{M}^+(N_{g,k}, x_0)$ lifts to $\mathcal{M}(N_{g,k+1})$ up to a power of d_{k+1} . We can regard a relation in $\mathcal{M}(N_{g,k+1})$ as a relation $\mathcal{M}(N_{g,n})$ by considering an inclusion $N_{g,k+1} \hookrightarrow N_{g,n}$ as in [1, Figure 21].

We have the following exact sequence:

$$1 \longrightarrow \pi_1(N_{g,k})^+ \xrightarrow{j_{x_0}} \mathcal{M}^+(N_{g,k}, x_0) \xrightarrow{\mathcal{F}} \mathcal{M}(N_{g,k}) \longrightarrow 1,$$

where j_{x_0} is the point pushing homomorphism about the base point x_0 and \mathcal{F} is the forgetful homomorphism induced by forgetting x_0 . By the exactness, for $\gamma \in \pi_1(N_{g,k})^+$ and $f \in \mathcal{M}^+(N_{g,k}, x_0)$, the product $fj_{x_0}(\gamma)f^{-1}$ lies in the image $j_{x_0}(\pi_1(N_{g,k})^+)$. Relations (D1a)–(D4g) are induced from conjugation of images of generators for $\pi_1(N_{g,k})^+$ in [1, Lemma 5.5] by lifts of generators of $\mathcal{M}(N_{g,k})$ with respect to \mathcal{F} .

We explain the meaning of subscripts in Relations (D1a)–(D4g).

- The subscripts $1 \leq j,k \leq n-1$ and $1 \leq i \leq g$ in Relations (D1a)– (D4g): they are ones of the images by j_{x_0} of generators for $\pi_1(N_{g,k})^+$ in [1, Lemma 5.5], that lies in the left-hand side in Relations (D1a)–(D4g), which are conjugated by lifts of generators of $\mathcal{M}(N_{g,k})$ with respect to \mathcal{F} .
- The subscripts $1 \leq l, t \leq k$ and $1 \leq m \leq g$ in Relations (D1a)–(D4g): they are ones of the lifts of generators for $\mathcal{M}(N_{g,k})$ with respect to \mathcal{F} , that also lies in the left-hand side in Relations (D1a)–(D4g), which conjugate $j_{x_0}(\gamma)$'s, where γ is a generator of $\pi_1(N_{g,k})^+$ in [1, Lemma 5.5].

When n = 2, since $k \leq n - 1 = 1$, we can not take $1 \leq l, t < k$. Hence the presentation in [1, Proposition 3.2] does not have Relations (D*d)–(D*g). Similarly, since we have k = j when n = 2, elements $s_{j,k}$ and $\bar{s}_{j,k}$ are not defined. Hence the presentation in [1, Proposition 3.2] does not have Relations (D3*) and (D4*), either. Thus, when n = 2, Relations (D1a)–(D1c) and (D2a)–(D2c) only remain. In particular, in the case $g \leq 3$ and n = 2, since b is not defined in $\mathcal{M}(N_{g,k})$, Relations (D1a), (D1b), (D2a), and (D2b) only remain.

The abelianization of $\mathcal{M}(N_{1,n})$. First, we remark that Relations (D2e)– (D4g) of [1, Lemma 5.5] are trivial relations in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$, since the relations form $YXY^{-1} = ZXZ^{-1}$. Since the elements a_i, y, b , and $a_{i;j}$ are not defined in $\mathcal{M}(N_{1,n})$, in the case n = 1, the presentation in [1, Proposition 3.2] does not have Relations (D*a)–(D*d) and (D1*). Thus, we have the presentation for $\mathcal{M}(N_{1,n})$ in [1, Proposition 3.2] is as follows:

Proposition 1. For $n \geq 2$, $\mathcal{M}(N_{1,n})$ admits the presentation with generators d_i $(1 \leq i \leq n-1)$, $r_{1,j}$ $(1 \leq j \leq n-1)$, $s_{i,j}$ $(1 \leq i < j \leq n-1)$, and $\bar{s}_{i,j}$ $(1 \leq i < j \leq n-1)$, and the following defining relations: Relations (D0), (D2e), (D2f), (D2g), (D3e), (D3f), (D3g), (D4e), (D4f), and (D4g) in [1, Proposition 3.2].

Since Relations (D2e)–(D4g) of [1, Lemma 5.5] are trivial relations in $H_1(\mathcal{M}(N_{g,n});\mathbb{Z})$, by Proposition 1, the abelianization of $\mathcal{M}(N_{1,n})$ is as follows:

Proposition 2. For $n \geq 2$,

$$H_1(\mathcal{M}(N_{1,n});\mathbb{Z}) \cong \mathbb{Z}^{2\left(n-1+\binom{n-1}{2}\right)}.$$

The abelianization of $\mathcal{M}(N_{2,n})$. Since the element *b* is not defined in $\mathcal{M}(N_{2,n})$, in the case n = 2, the presentation in [1, Proposition 3.2] does not have Relations (D*c). Thus, we have the presentation for $\mathcal{M}(N_{2,n})$ in [1, Proposition 3.2] is as follows:

Proposition 3. For $n \ge 2$, $\mathcal{M}(N_{2,n})$ admits the presentation with generators a_1 , y, d_i $(1 \le i \le n-1)$, $a_{1;j}$ $(1 \le j \le n-1)$, $r_{i,j}$ $(1 \le i \le 2, 1 \le j \le n-1)$, $s_{i,j}$ $(1 \le i < j \le n-1)$, and $\bar{s}_{i,j}$ $(1 \le i < j \le n-1)$, and the following defining relations for $1 \le k \le n-1$, $1 \le l < t < k$, and $1 \le i, m \le g$:

By using Proposition 3, we have the following proposition.

Proposition 4.

$$H_1(\mathcal{M}(N_{2,n});\mathbb{Z}) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z}_2^3 \text{ for } n = 2, \\ \mathbb{Z}^{\binom{n-1}{2}+1} \oplus \mathbb{Z}_2^{2(n-1)+1} & \text{for } n \ge 3. \end{cases}$$

Proof. For conveniences, we write an element of $\mathcal{M}(N_{2,n})$ and its equivalence class in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$ by the same symbol. We recall that Relations (D0), (D2e)– (D3b), (D3d)–(D4b), and (D4d)–(D4g) are trivial in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$ again. The last relations mean that $\bar{s}_{l,k;i} = \bar{s}_{l,k}$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Relations (D1a), (D1d), (D1f), and (D1g) are trivial in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Relations (D1a), (D1d), (D1f), and easy argument), Relations (D2a) and (D2b) are equivalent to the relations $r_{1;k} = r_{2;k}$ and $r_{1;k}^2 = 1$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Up to the relations $a_1^2 = 1$, $r_{1;k} = r_{2;k}$, and $r_{1;k}^2 = 1$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$, Relation (D1b) for i = 1 is equivalent to the relation $a_{1;k}^2 = 1$, and Relation (D1b) for i = 2 is equivalent to the relation $r_{1;k} = d_k$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$.

In the case n = 2, by an argument in the paragraph "Relations (D1a)–(D4g) for n = 2", only Relations (D1a), (D1b), (D2a), and (D2b) remain in the presentation of Proposition 3. Hence, as a presentation of an abelian subgroup (i.e. we omit commutative relations), we have

$$H_1(\mathcal{M}(N_{2,2});\mathbb{Z})$$

$$\cong \langle a_1, y, d_1, a_{1;1}, r_{1;1} | a_1^2 = a_{1;1}^2 = r_1^2 = 1, r_{1,1} = d_1 \rangle$$

$$\cong \langle a_1, y, a_{1;1}, r_{1;1} | a_1^2 = a_{1;1}^2 = r_1^2 = 1 \rangle$$

$$\cong \mathbb{Z} \oplus \mathbb{Z}_2^3.$$

Assume that $n \geq 3$. We recall that $\bar{s}_{l,k;i} = \bar{s}_{l,k}$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Up to the relations $r_{1;k} = r_{2;k}$ and $r_{1;k}^2 = 1$, Relation (D1e) for $m \in \{1,2\}$ is equivalent to the relation $s_{l;k}\bar{s}_{l;k}d_k^{-2} = 1$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Similarly, Relation (D2d) for $i \in \{1,2\}$ is equivalent to the relation $s_{l;k}\bar{s}_{l;k}d_l^{-2} = 1$ in $H_1(\mathcal{M}(N_{2,n});\mathbb{Z})$. Thus, we have

$$\begin{aligned} H_1(\mathcal{M}(N_{2,n});\mathbb{Z}) \\ &\cong \ \left\langle a_1, y, d_i, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\left| a_1^2 = a_{1;i}^2 = r_{1;i}^2 = r_{1,i} d_i^{-1} = 1 \ (1 \le i \le n-1), s_{i;j} \bar{s}_{i;j} d_j^{-2} = s_{i;j} \bar{s}_{i;j} d_i^{-2} = 1 \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\left| a_1^2 = a_{1;i}^2 = r_{1;i}^2 = 1 \ (1 \le i \le n-1), s_{i;j} \bar{s}_{i;j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j}, \bar{s}_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i < j \le n-1) \right\rangle \\ &\cong \ \left\langle a_1, y, a_{1;i}, r_{1;i} \ (1 \le i \le n-1), s_{i,j} \ (1 \le i \le n-1) \right\rangle \end{aligned}$$

References

 R. Kobayashi, G. Omori, An infinite presentation for the mapping class group of a nonorientable surface with boundary, Osaka J. Math. 59 (2022), no. 2, 269–314.

(RYOMA KOBAYASHI) DEPARTMENT OF GENERAL EDUCATION, ISHIKAWA NATIONAL COLLEGE OF TECHNOLOGY, TSUBATA, ISHIKAWA, 929-0392, JAPAN Email address: kobayashi_ryoma@ishikawa-nct.ac.jp

(Genki Omori) Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 307 Minuma, Saitama-shi, Saitama, 337-8570, Japan

 $Email \ address: \ {\tt omoriQsic.shibaura-it.ac.jp}$