ERRATUM: "AN INFINITE PRESENTATION FOR THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE WITH BOUNDARY"

RYOMA KOBAYASHI AND GENKI OMORI

The purpose of this note is to call attention to an error in the paper [1]. In addition, we notice the abelisnization of the mapping class group $\mathcal{M}\left(N_{g, n}\right)$ for $g=1,2$.

Correction of relations. There is an error in part of the relations (D1a)-(D4g) in the presentation in [1, Proposition 3.2]. The mistake is due to a miscalculation of the exponent of $d_{k}{ }^{1}$ at the end of the relations (we call the exponent the index). We list the revision of relations as follows:

- Relation (D1b) for $i=1$:
$" y\left(a_{i ; k} a_{i}^{-1}\right) y^{-1}=\ldots r_{2 ; k} r_{1 ; k} d_{n-1}^{-2} " \rightarrow " y\left(a_{i ; k} a_{i}^{-1}\right) y^{-1}=\ldots r_{2 ; k} r_{1 ; k} "$,
- Relation (D2a) for $m=i-1$:
$" a_{m} r_{i ; k} a_{m}^{-1}=\ldots r_{i ; k}\left(a_{i-1 ; k} a_{i-1}^{-1}\right) d_{k} " \rightarrow " a_{m} r_{i ; k} a_{m}^{-1}=\ldots r_{i ; k}\left(a_{i-1 ; k} a_{i-1}^{-1}\right) "$,
- Relation (D2b) for $i=2$:
$" y r_{i ; k} y^{-1}=\ldots r_{2 ; k} r_{1 ; k} d_{n-1} " \rightarrow " y r_{i ; k} y^{-1}=\ldots r_{2 ; k} r_{1 ; k} "$,
- Relation (D4e) for $m=1$ and $l>j$:
$" r_{m ; l}\left(\bar{s}_{j ; k} d_{j}^{-1}\right) r_{m ; l}^{-1}=\{\ldots\}^{-1}\left(\bar{s}_{j ; k} d_{j}\right)^{-1}\{\ldots\} "$
$\rightarrow " r_{m ; l}\left(\bar{s}_{j ; k} d_{j}^{-1}\right) r_{m ; l}^{-1}=\{\ldots\}^{-1}\left(\bar{s}_{j ; k} d_{j}^{-1}\right)\{\ldots\}$ ".
The last error is a typo. The first three errors are due to a mistake of [1, Lemma 5.9]. To be precise, ε in Lemma 5.9 is correct as follows.

$$
\varepsilon= \begin{cases}2 & \begin{array}{l}
\text { for Relation (D1e) } \\
1 \\
\text { for Ror } m=i+1 i o n ~(D 1 d)^{\prime} \\
\text { for } m=i+1, \\
-1
\end{array} \\
\begin{array}{l}
\text { for Relations (D1b) } \\
\text { and (D1d) for } i=2,(\mathrm{D} 1 \mathrm{c})^{\prime}
\end{array} \text { for } i=4, \\
-2 & \begin{array}{l}
\text { for Relation (D1e) } \\
\text { for } \\
\text { for the other cases. }
\end{array} \\
0 & \text { for }=i\end{cases}
$$

The relation $\left[r_{2 ; 1}\right]=\left[r_{1 ; 1}\right]$ in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$. By (the corrected version of) Relation (D2b) for $i=2$, we have $2\left[r_{1, k}\right]=1$ for $1 \leq k \leq n-1$. By Relation (D2a) for $m=i-1$ or $m=i$, we have $\left[r_{i+1, k}\right]=-\left[r_{i, k}\right]$ for $1 \leq i \leq g-1$. Hence, by using these relations, we have

$$
\left[r_{2, k}\right]=-\left[r_{1, k}\right]=\left[r_{1, k}\right]
$$

[^0]in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$. Since $\left[r_{2, k}\right]=\left[r_{1, k}\right]$ has order 2 in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$, by a similar argument above, we also have $\left[r_{i+1, k}\right]=\left[r_{i, k}\right]$ in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$ for $1 \leq i \leq g-1$.

Relations (D1a)-(D4g) for $n=2$. For $1 \leq k \leq n-1$, we regard $N_{g, k}$ as the surface which is obtained from $N_{g, n}$ by attaching $n-k$ disks along $\delta_{n-1}, \delta_{n-2}, \ldots, \delta_{k}$. The natural inclusion $N_{g, k+1} \hookrightarrow N_{g, k}$ induces a surjective homomorpism $\mathcal{M}\left(N_{g, k+1}\right) \rightarrow \mathcal{M}^{+}\left(N_{g, k}, x_{0}\right)$, where x_{0} is a base point in the interior of the disk capping δ_{k}. Since the kernel of this homomorphism is the infinite cyclic group generated by the boundary twist d_{k+1}, a relation in $\mathcal{M}^{+}\left(N_{g, k}, x_{0}\right)$ lifts to $\mathcal{M}\left(N_{g, k+1}\right)$ up to a power of d_{k+1}. We can regard a relation in $\mathcal{M}\left(N_{g, k+1}\right)$ as a relation $\mathcal{M}\left(N_{g, n}\right)$ by considering an inclusion $N_{g, k+1} \hookrightarrow N_{g, n}$ as in [1, Figure 21].

We have the following exact sequence:

$$
1 \longrightarrow \pi_{1}\left(N_{g, k}\right)^{+} \xrightarrow{j_{x_{0}}} \mathcal{M}^{+}\left(N_{g, k}, x_{0}\right) \xrightarrow{\mathcal{F}} \mathcal{M}\left(N_{g, k}\right) \longrightarrow 1
$$

where $j_{x_{0}}$ is the point pushing homomorphism about the base point x_{0} and \mathcal{F} is the forgetful homomorphism induced by forgetting x_{0}. By the exactness, for $\gamma \in \pi_{1}\left(N_{g, k}\right)^{+}$and $f \in \mathcal{M}^{+}\left(N_{g, k}, x_{0}\right)$, the product $f j_{x_{0}}(\gamma) f^{-1}$ lies in the image $j_{x_{0}}\left(\pi_{1}\left(N_{g, k}\right)^{+}\right)$. Relations (D1a)-(D4g) are induced from conjugation of images of generators for $\pi_{1}\left(N_{g, k}\right)^{+}$in [1, Lemma 5.5] by lifts of generators of $\mathcal{M}\left(N_{g, k}\right)$ with respect to \mathcal{F}.

We explain the meaning of subscripts in Relations (D1a)-(D4g).

- The subscripts $1 \leq j, k \leq n-1$ and $1 \leq i \leq g$ in Relations (D1a)$(\mathrm{D} 4 \mathrm{~g})$: they are ones of the images by $j_{x_{0}}$ of generators for $\pi_{1}\left(N_{g, k}\right)^{+}$ in [1, Lemma 5.5], that lies in the left-hand side in Relations (D1a)-(D4g), which are conjugated by lifts of generators of $\mathcal{M}\left(N_{g, k}\right)$ with respect to \mathcal{F}.
- The subscripts $1 \leq l, t \leq k$ and $1 \leq m \leq g$ in Relations (D1a)-(D4g): they are ones of the lifts of generators for $\mathcal{M}\left(N_{g, k}\right)$ with respect to \mathcal{F}, that also lies in the left-hand side in Relations (D1a)-(D4g), which conjugate $j_{x_{0}}(\gamma)$'s, where γ is a generator of $\pi_{1}\left(N_{g, k}\right)^{+}$in [1, Lemma 5.5].
When $n=2$, since $k \leq n-1=1$, we can not take $1 \leq l, t<k$. Hence the presentation in [1, Proposition 3.2] does not have Relations ($\mathrm{D} * \mathrm{~d}$) $-(\mathrm{D} * \mathrm{~g})$. Similarly, since we have $k=j$ when $n=2$, elements $s_{j, k}$ and $\bar{s}_{j, k}$ are not defined. Hence the presentation in [1, Proposition 3.2] does not have Relations (D3*) and (D4*), either. Thus, when $n=2$, Relations (D1a)-(D1c) and (D2a)-(D2c) only remain. In particular, in the case $g \leq 3$ and $n=2$, since b is not defined in $\mathcal{M}\left(N_{g, k}\right)$, Relations (D1a), (D1b), (D2a), and (D2b) only remain.

The abelianization of $\mathcal{M}\left(N_{1, n}\right)$. First, we remark that Relations (D2e)(D4g) of [1, Lemma 5.5] are trivial relations in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$, since the relations form $Y X Y^{-1}=Z X Z^{-1}$. Since the elements a_{i}, y, b, and $a_{i ; j}$ are not defined in $\mathcal{M}\left(N_{1, n}\right)$, in the case $n=1$, the presentation in [1, Proposition 3.2] does not have Relations $(\mathrm{D} * \mathrm{a})-(\mathrm{D} * \mathrm{~d})$ and $(\mathrm{D} 1 *)$. Thus, we have the presentation for $\mathcal{M}\left(N_{1, n}\right)$ in [1, Proposition 3.2] is as follows:

Proposition 1. For $n \geq 2, \mathcal{M}\left(N_{1, n}\right)$ admits the presentation with generators d_{i} $(1 \leq i \leq n-1), r_{1, j}(1 \leq j \leq n-1), s_{i, j}(1 \leq i<j \leq n-1)$, and $\bar{s}_{i, j}$ $(1 \leq i<j \leq n-1)$, and the following defining relations:

Relations (D0), (D2e), (D2f), (D2g), (D3e), (D3f), (D3g), (D4e), (D4f), and (D4g) in [1, Proposition 3.2].

Since Relations (D2e)-(D4g) of [1, Lemma 5.5] are trivial relations in $H_{1}\left(\mathcal{M}\left(N_{g, n}\right) ; \mathbb{Z}\right)$, by Proposition 1, the abelianization of $\mathcal{M}\left(N_{1, n}\right)$ is as follows:

Proposition 2. For $n \geq 2$,

$$
H_{1}\left(\mathcal{M}\left(N_{1, n}\right) ; \mathbb{Z}\right) \cong \mathbb{Z}^{2\left(n-1+\binom{n-1}{2}\right)}
$$

The abelianization of $\mathcal{M}\left(N_{2, n}\right)$. Since the element b is not defined in $\mathcal{M}\left(N_{2, n}\right)$, in the case $n=2$, the presentation in [1, Proposition 3.2] does not have Relations ($\mathrm{D} * \mathrm{c}$). Thus, we have the presentation for $\mathcal{M}\left(N_{2, n}\right)$ in [1, Proposition 3.2] is as follows:

Proposition 3. For $n \geq 2, \mathcal{M}\left(N_{2, n}\right)$ admits the presentation with generators a_{1}, $y, d_{i}(1 \leq i \leq n-1), a_{1 ; j}(1 \leq j \leq n-1), r_{i, j}(1 \leq i \leq 2,1 \leq j \leq n-1)$, $s_{i, j}(1 \leq i<j \leq n-1)$, and $\bar{s}_{i, j}(1 \leq i<j \leq n-1)$, and the following defining relations for $1 \leq k \leq n-1,1 \leq l<t<k$, and $1 \leq i, m \leq g$:
(0) $y a_{1} y^{-1}=a_{1}^{-1}$,
(D1a) $a_{1}\left(a_{1 ; k} a_{1}^{-1}\right) a_{1}^{-1}=a_{1 ; k} a_{1}^{-1}$,
(D1b) $y\left(a_{1 ; k} a_{1}^{-1}\right) y^{-1}=\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k} r_{1 ; k}$,
(D1d) $a_{1 ; l}\left(a_{1 ; k} a_{1}^{-1}\right) a_{1 ; l}^{-1}=\left\{\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{1}^{-1}\right)\right\}^{-1}\left(a_{1 ; k} a_{1}^{-1}\right)\left\{\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{i}^{-1}\right)\right\}$,
(D1e) $r_{m ; l}\left(a_{1 ; k} a_{1}^{-1}\right) r_{m ; l}^{-1}=$

$$
\begin{cases}\left\{r_{1 ; k}^{-1}\left(s_{l, k} d_{l}^{-1}\right)^{-1} r_{1 ; k}\right\}\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{1}^{-1}\right) \\ \left(\bar{s}_{l, k ; 1} d_{l}^{-1}\right)^{-1}\left\{r_{1 ; k}^{-1}\left(s_{l, k} d_{l}^{-1}\right)^{-1} r_{1 ; k}\right\}^{-1} d_{k}^{-2} & \text { for } m=1, \\ r_{2 ; k}^{-1}\left(s_{l, k} d_{l}^{-1}\right)^{-1} r_{2 ; k}\left(\bar{s}_{l, k ; 2} d_{l}^{-1}\right)\left(a_{2 ; k} a_{1}^{-1}\right) d_{k}^{2} & \text { for } m=2\end{cases}
$$

(D1f) $s_{l, t}\left(a_{1 ; k} a_{1}^{-1}\right) s_{l, t}^{-1}=a_{1 ; k} a_{1}^{-1}$,
(D1g) $\bar{s}_{l, t}\left(a_{1 ; k} a_{1}^{-1}\right) \bar{s}_{l, t}^{-1}=\left[\left(\bar{s}_{l, k} d_{l}^{-1}\right)^{-1}, s_{t, k} d_{t}^{-1}\right]^{-1}\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{1}^{-1}\right)$

$$
r_{1 ; k}\left(\bar{s}_{t, k} d_{t}^{-1}\right) r_{1 ; k}^{-1}\left(s_{l, k} d_{l}^{-1}\right)^{-1} r_{1 ; k}\left(\bar{s}_{t, k} d_{t}^{-1}\right)^{-1} r_{1 ; k}^{-1}\left[\left(\bar{s}_{l, k} d_{l}^{-1}\right)^{-1},\left(s_{t, k} d_{t}^{-1}\right)\right]
$$

(D2a) $a_{1} r_{i ; k} a_{1}^{-1}=\left\{\begin{array}{l}r_{2 ; k} r_{1 ; k}\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k}\left(a_{1 ; k} a_{1}^{-1}\right) \quad \text { for } i=2, \\ \left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k}^{-1}\left(a_{1 ; k} a_{1}^{-1}\right) \quad \text { for } i=1,\end{array}\right.$
(D2b) $y r_{i ; k} y^{-1}=\left\{\begin{array}{l}\left\{\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k} r_{1 ; k}\right\}^{-1} r_{1 ; k}^{-1}\left\{\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k} r_{1 ; k}\right\} \quad \text { for } i=1, \\ \left(a_{1 ; k} a_{1}^{-1}\right) r_{1 ; k}\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k} r_{1 ; k} \quad \text { for } i=2,\end{array}\right.$
(D2d) $a_{1 ; l} r_{i ; k} a_{1 ; l}^{-1}=$

$$
\left\{\begin{array}{l}
\left\{\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{1}^{-1}\right)\right\}^{-1}\left(a_{1 ; k} a_{1}^{-1}\right)\left(s_{l, k} d_{l}^{-1}\right) r_{2 ; k} \\
r_{1 ; k}\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k}\left(\bar{s}_{l, k ; 2} d_{l}^{-1}\right)\left\{\left(s_{l, k} d_{l}^{-1}\right)\left(a_{1 ; k} a_{1}^{-1}\right)\right\} \quad \text { for } i=2 \\
\left(a_{1 ; k} a_{1}^{-1}\right)^{-1}\left(s_{l, k} d_{l}^{-1}\right)^{-1} r_{2 ; k}^{-1}\left(a_{1 ; k} a_{1}^{-1}\right)\left(\bar{s}_{l, k ; 1} d_{l}^{-1}\right)^{-1} \quad \text { for } i=1
\end{array}\right.
$$

and Relations (D0), (D2e)-(D3b), (D3d)-(D4b), and (D4d)-(D4g) in $[1$,
Proposition 3.2],
where $\bar{s}_{l, k ; 1}=\bar{s}_{l, k}$ and $\bar{s}_{l, k ; 2}=\left\{\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k}\right\}^{-1} \bar{s}_{l, k}\left\{\left(a_{1 ; k} a_{1}^{-1}\right)^{-1} r_{2 ; k}\right\}$.
By using Proposition 3, we have the following proposition.

Proposition 4.

$$
H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right) \cong\left\{\begin{array}{ll}
\mathbb{Z} \oplus \mathbb{Z}_{2}^{3} & \text { for } n=2, \\
\left.\left.\mathbb{Z}^{(n-1}\right)^{2}\right)+1
\end{array} \mathbb{Z}_{2}^{2(n-1)+1} \quad \text { for } n \geq 3\right.
$$

Proof. For conveniences, we write an element of $\mathcal{M}\left(N_{2, n}\right)$ and its equivalence class in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$ by the same symbol. We recall that Relations (D0), (D2e)(D3b), (D3d)-(D4b), and (D4d)-(D4g) are trivial in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$ again. The last relations mean that $\bar{s}_{l, k ; i}=\bar{s}_{l, k}$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Relations (D1a), (D1d), (D1f), and (D1g) are trivial in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Relation (0) is equivalent to the relation $a_{1}^{2}=1$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. By an argument in the second paragraph (and an easy argument), Relations (D2a) and (D2b) are equivalent to the relations $r_{1 ; k}=r_{2 ; k}$ and $r_{1 ; k}^{2}=1$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Up to the relations $a_{1}^{2}=1, r_{1 ; k}=r_{2 ; k}$, and $r_{1 ; k}^{2}=1$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$, Relation (D1b) for $i=1$ is equivalent to the relation $a_{1 ; k}^{2}=1$, and Relation (D1b) for $i=2$ is equivalent to the relation $r_{1 ; k}=d_{k}$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$.

In the case $n=2$, by an argument in the paragraph "Relations (D1a)-(D4g) for $n=2$ ", only Relations (D1a), (D1b), (D2a), and (D2b) remain in the presentation of Proposition 3. Hence, as a presentation of an abelian subgroup (i.e. we omit commutative relations), we have

$$
\begin{aligned}
& H_{1}\left(\mathcal{M}\left(N_{2,2}\right) ; \mathbb{Z}\right) \\
\cong & \left\langle a_{1}, y, d_{1}, a_{1 ; 1}, r_{1 ; 1} \mid a_{1}^{2}=a_{1 ; 1}^{2}=r_{1}^{2}=1, r_{1,1}=d_{1}\right\rangle \\
\cong & \left\langle a_{1}, y, a_{1 ; 1}, r_{1 ; 1} \mid a_{1}^{2}=a_{1 ; 1}^{2}=r_{1}^{2}=1\right\rangle \\
\cong & \mathbb{Z} \oplus \mathbb{Z}_{2}^{3}
\end{aligned}
$$

Assume that $n \geq 3$. We recall that $\bar{s}_{l, k ; i}=\bar{s}_{l, k}$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Up to the relations $r_{1 ; k}=r_{2 ; k}$ and $r_{1 ; k}^{2}=1$, Relation (D1e) for $m \in\{1,2\}$ is equivalent to the relation $s_{l ; k} \bar{s}_{l ; k} d_{k}^{-2}=1$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Similarly, Relation (D2d) for $i \in\{1,2\}$ is equivalent to the relation $s_{l ; k} \bar{s}_{l ; k} d_{l}^{-2}=1$ in $H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right)$. Thus, we have

$$
\begin{aligned}
& H_{1}\left(\mathcal{M}\left(N_{2, n}\right) ; \mathbb{Z}\right) \\
\cong & \left\langle a_{1}, y, d_{i}, a_{1 ; i}, r_{1 ; i}(1 \leq i \leq n-1), s_{i, j}, \bar{s}_{i, j}(1 \leq i<j \leq n-1)\right. \\
& \mid a_{1}^{2}=a_{1 ; i}^{2}=r_{1 ; i}^{2}=r_{1, i} d_{i}^{-1}=1(1 \leq i \leq n-1), \\
& \left.s_{i ; j} \bar{s}_{i ; j} d_{j}^{-2}=s_{i ; j} \bar{s}_{i ; j} d_{i}^{-2}=1(1 \leq i<j \leq n-1)\right\rangle \\
\cong & \left\langle a_{1}, y, a_{1 ; i}, r_{1 ; i}(1 \leq i \leq n-1), s_{i, j}, \bar{s}_{i, j}(1 \leq i<j \leq n-1)\right. \\
& \mid a_{1}^{2}=a_{1 ; i}^{2}=r_{1 ; i}^{2}=1(1 \leq i \leq n-1), \\
& \left.s_{i ; j} \bar{s}_{i ; j} r_{1 ; j}^{-2}=s_{i ; j} \bar{s}_{i ; j} r_{1 ; i}^{-2}=1(1 \leq i<j \leq n-1)\right\rangle \\
\cong & \left\langle a_{1}, y, a_{1 ; i}, r_{1 ; i}(1 \leq i \leq n-1), s_{i, j}, \bar{s}_{i, j}(1 \leq i<j \leq n-1)\right. \\
& \left|a_{1}^{2}=a_{1 ; i}^{2}=r_{1 ; i}^{2}=1(1 \leq i \leq n-1), s_{i ; j} \bar{s}_{i ; j}=s_{i ; j} \bar{s}_{i ; j}=1(1 \leq i<j \leq n-1)\right\rangle \\
\cong & \left\langle a_{1}, y, a_{1 ; i}, r_{1 ; i}(1 \leq i \leq n-1), s_{i, j}, \bar{s}_{i, j}(1 \leq i<j \leq n-1)\right. \\
& \left|a_{1}^{2}=a_{1 ; i}^{2}=r_{1 ; i}^{2}=1(1 \leq i \leq n-1), s_{i ; j} \bar{s}_{i ; j}=1(1 \leq i<j \leq n-1)\right\rangle \\
\cong & \left\langle a_{1}, y, a_{1 ; i}, r_{1 ; i}(1 \leq i \leq n-1), s_{i, j}(1 \leq i<j \leq n-1)\right. \\
& \left|a_{1}^{2}=a_{1 ; i}^{2}=r_{1 ; i}^{2}=1(1 \leq i \leq n-1)\right\rangle \\
\cong & \mathbb{Z}\left({ }^{n-1}{ }_{2}^{2}\right)+1 \oplus \mathbb{Z}_{2}^{2(n-1)+1} .
\end{aligned}
$$

References

[1] R. Kobayashi, G. Omori, An infinite presentation for the mapping class group of a nonorientable surface with boundary, Osaka J. Math. 59 (2022), no. 2, 269-314.
(Ryoma Kobayashi) Department of General Education, Ishikawa National College of Technology, Tsubata, Ishikawa, 929-0392, Japan

Email address: kobayashi_ryoma@ishikawa-nct.ac.jp
(Genki Omori) Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 307 Minuma, Saitama-Shi, Saitama, 337-8570, JAPAN

Email address: omori@sic.shibaura-it.ac.jp

[^0]: ${ }^{1}$ There is a place where d_{k} is written incorrectly as d_{n-1}.

